The ESB Master Program is about Energy and Buildings with a special focus on Solar Energy, from fundamental concepts to applications, modelling and optimization. Courses are conducted in English.

OBJECTIVES

- Train scientists capable of solving complex problems relating to the management, design and optimization of multiple-input technological systems.
- Develop the expertise and skills needed to carry out research into energy management, environmental protection, the use of innovative materials and the production of innovative structures as part of a global policy of sustainable development.

SKILLS AND EXPERTISE

- Design and implement complex technological systems that are self-regulating (or autonomous) and that protect the environment improved energy efficiency and the use of specific methods, processes and materials.
- Expertise in associated tools (modeling, simulation, measurement, information management).
<table>
<thead>
<tr>
<th></th>
<th>Master ESB</th>
<th>ECTS</th>
<th>Lectures</th>
<th>Tutorials</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>S7</td>
<td>UE1 : Mathematics
Data analysis and reliability of numerical models, Numerical Methods</td>
<td>7</td>
<td>16.5</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UE2 : Building Science and Technology
Combustion, Heat transfer in buildings, HVAC</td>
<td>11</td>
<td>34.5</td>
<td>42</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>UE3 : Experimental methods and Bibliography research
Measurements (flows, temperature, pressure...) and experimental methods (database), Thematic bibliographic work (self-study)</td>
<td>12</td>
<td>21</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>S8</td>
<td>UE1 : Energy
Energetics (advanced thermodynamics and heat transfers), Fluid engineering applied to energy (hydraulic and marine)</td>
<td>12</td>
<td>42</td>
<td>55.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UE2 : Systems
Control for building applications, Innovative energy systems (Fuel cell, CHP)</td>
<td>8</td>
<td>27</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>UE3 : Project
Group research project</td>
<td>10</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9</td>
<td>UE1 : Solar Energy
Solar thermal energy, Solar Photovoltaic</td>
<td>8</td>
<td>36</td>
<td>40.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UE2 : Building and renewable energies
District heating and smart grids / practical work, Energy issues, labels, regulation and transient simulations</td>
<td>7</td>
<td>24</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>UE3 : Modeling and optimization
Advanced building modeling (heat and mass transfer), Numerical tools (CFD, systems, optimization)</td>
<td>8</td>
<td>21</td>
<td>15</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>UE4 : Project
Technical or R&D Project</td>
<td>7</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S10</td>
<td>UE1 : Internship
Master thesis (Research or Industrial)</td>
<td>30</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>